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Abstract-An integral method is presented that utilizes Galerkin functions and leads to closed-form solutions 
for temperature distribution in the liqtdd and solid phase. Unlike methods using quasi-steady assumptions, 
this method retains the contribution of the internal heat capacity of solid and liquid, therefore, 
accommodating problems involving time-dependent temperature along the boundary. The method is applied 
to classical one- and two-dimensional solidification problems to test its accuracy. The agreement between this 
method and the existing one-dimensional boundary-layer integral method is excellent. The two-dimensional 

results for a square geometry are compared to the experimental data obtained for octadecane. 

INTRODUCTION 

AMONG NUMEROUS numerical and analytical treat- 
ments of moving boundary problems cited in the 
literature, one-dimensional geometries have received 
considerably more attention. Numerical methods are 
primarily used for two- and three-dimensional bodies. 
The numerical solutions can be classified into two cate- 
gories: the single-region approach and the multiple- 
region approach. In the single-region approach, 
which is also known as the enthalpy or heat capacity 
method, the energy equation is applied once over the 
entire liquid and solid regions and the latent energy re- 
lease is simulated by modifying the specific heat or en- 
thalpy. In the multiple-region approach the energy 
equation is applied separately for each phase and the 
two equations are coupled using energy balance in ad- 
dition to the continuity of temperature at the interface. 

Some of the solution methods used for one- 
dimensional geometries with moving boundaries are 
the approximate integral method [l-3], the enthalpy 
method [4, 51, the variational method C&S], the 
passive resistance-capacity method [9], numerical 
methods [lO-163, and the Monte Carlo method [17]. 
Except for a few simple geometries [IS], the majority of 
two-dimensional moving boundary solutions reported 
in the literature are numerical. Allen and Severn [ 191, 
Poots [20], Lazaridis [21], Voller and Cross [S], 
Crowley [22], Saitoh [23], and Shamsunder and 
Sparrow [24,25] presented solutions for solidification 
of a liquid at freezing temperature in a square prism. A 
curvilinear coordinate system in conjunction with a 
finite-difference scheme has been an important feature 
of the numerical solutions. 

In the last two decades, numerous reports [5,19-231 
have indicated that the solidification front in a square 
prism becomes circular as the solidification front 
progresses. However, experimental results docu- 
mented in this paper indicate that many popular phase- 

t Presently at the University of Al Fateh, Faculty of 
Engineering, Tripoli, Libya. 

change materials do not behave as predicted by the 
available numerical solutions. Widely-used phase- 
change materials, n-octadecane, and commercial 
octadecane are selected to show this disagreement. The 
commercially available octadecane contains isomers of 
octadecane. A methyl group disrupts the organized 
crystallization process and the solid exhibits isotropic 
behavior, an important feature for evaluating an 
analytical prediction. 

In the analytical portion of this study, it is assumed 
that the speed of the moving boundary is generally slow 
and the domain of interest is free of any heat sources 
with rapidly varying temperature. In addition, the effect 
ofthe crystallization process and surface kinetics at the 
interface are neglected. The standard Galerkin method 
is utilized for computation of the quasi-steady 
contribution to the solution. The Galerkin method 
[26] is used because it provides the unique feature of 
having maximum accuracy at the interface where the 
heat flux must be calculated. Highly accurate heat flux 
and other needed derivatives are particularly import- 
ant when the moving boundary proceeds from a sharp 
corner. The Galerkin method requires that the moving 
boundary be defined by a suitable function of time and 
position. The quasi-steady solution is extended by 
incorporating the transient contribution correspond- 
ing to the first eigenvalue. An approximate integral 
method which makes use of Galerkin functions is 
introduced for calculation of this eigenvalue. 

MATHEMATICAL FORMULATION 

The solution of the diffusion equation in either the 
solid or the liquid region (Fig. 1) can be decomposed 
into two parts: a quasi-steady and a transient. This 
scheme improves the convergence characteristics of the 
diffusion equation [27]. Although both contributions 
are transient in nature, the ‘transient’in this paper refers 
to the difference between the general solution and the 
quasi-steady contribution. If Tis the local temperature 
and T* represents the local quasi-steady temperature, 
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NOMENCLATURE 

a see Fig. 6 L& temperature, hot surface [“Cl 
a, constant r, fusion temperature c”C] 
A area T, temperature, cold surface [“Cl 
B constant, a parameter of the method T, surface temperature c”C] 
C, specific heat BJ kg- 1 “C- ‘1 V volume 
fi Galerkin function V, volume ratio of two successive intervals 
F auxiliary function X, Y, Z Cartesian coordinates. 
k thermal coriductivity [W m-l “C-‘1 
L slab thickness [m] Greek symbols 
9 the latent heat of fusion [kJ kg- ‘1 CI thermal diffusivity [mZ s- ‘1 
M, N number of terms B, y parameters of the method 
0 unit vector along outer normal 0 angular coordinate 
p constant 1 summation index 
r position vector 4 first term in Galerkin function 
ri position vector of the hot surface p density [kg me3]. 
r, position vector of the interface 
r0 position vector of the cold surface Subscripts 
R region 1 solid 
S boundary of region R 2 liquid 
t time [s] i interface position 
T local temperature c”C] j time step 
?, T* average and quasi-steady temperatures k, 1 indices 

C”Cl m interface. 

then, according to the aforementioned definition the Galerkin functions are readily available for 

T(r, t) = T*(r, t)+ [BF(r)/a] dp/dt. (1) 
computation of the transient contribution. Since the 
quasi-steady solution includes the nonhomogeneous 

The second term on the RHS of equation (1) represents 
a correction term to the quasi-steady solution which is 
termed the ‘transient’ contribution. The function F(r) 
describes the spatial dependence of temperature ?: 
while ?‘(t) is the average temperature in the region 
under consideration, a is the thermal diffusivity, and J3 is 
a parameter to be evaluated later. 

The function T*(r, t) is to be computed using the 
Galerkin method with time serving as a parameter. The 
Galerkin method is selected because, unlike the finite- 
difference method, it provides smooth temperature 
distribution and maximum accuracy near the 
boundary. Once the quasi-steady solution is computed, 

‘t Y-----Y 

boundary conditions, the function F(r) must satisfy 
only a homogeneous set of boundary conditions 
consistent with those for ‘I 

Any solution of the diffusion equation must satisfy 
the initial and boundary conditions in addition to the 
diffusion equation. The uniqueness theorem in the 
theory of the partial differential equations then 
guarantees that this solution is unique. However, an 
approximate solution fails to satisfy all of the 
aforementioned conditions. In general, the integral 
solutions satisfy the initial and the boundary 
conditions while the diffusion equation is satisfied in the 
integral form. Following the same logic, equation (1) is 
arranged in a way that satisfies the boundary 
conditions. The integral form of the diffusion equation 
in thd absence of any internal heat source or sink is 

s 
k(aT/an) dS = d(pC,Vn/dt (2) 

s 

where n is the outward unit vector on surface S, Fig. 1. 
The constant B in equation (1) can be obtained by 
substituting equation (1) into (2) and considering that, 
in accordance with the definition of T*, 

FIG. 1. Schematic of the region R and boundary S. 
(aT*/an) ds = 0. (3) 
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The value of B obtained in this manner is 

B = [V+ ?‘(dV/dt)/(d’?/dt)] 
/l 

@F/an) dS (4) 
s 

In this derivation, the thermal properties in each phase 
are considered to be independent of temperature and 
position. Equation (4) ensures that the energy equation 
in the integral form is satisfied. The remaining 
unknown in equation (1) is the instantaneous average 
temperature, ‘t; which can be computed utilizing the 
definition of $; that is 

TdK 

Equation (1) can now be substituted in (5) and the result 
after some rearrangement of the terms is 

d?/dt = (/I-~)j+‘/V)(dV/dt) (6) 

where, 

/?=t T*dV 
s V 

and 

~=-[~l(aFidddS]/SvFdV (6b) 

The second term on the RHS of equation (6) represents 
the effect of boundary movement on the rate of change 
of the average temperature. When there is no boundary 
movement, the term which includes dV/dt will vanish. 
Equation(6) can be integrated analytically between any 
time tj and a later time t, 

* 
xexp - (s > Y dt . (7) 

fI 

It appears that equations(l), (4) and (7) are sufficient for 
computation of temperature distribution, T However, 
the instantaneous configuration of the region under 
consideration is required. In a moving boundary 
problem which involves melting or freezing of a phase- 
change material, the value of ? and Y are 
interdependent. The interdependency between ?and V 
can be defined using the conservation of energy and 
continuity of temperature at the liquid/solid interface. 
Therefore, at any point i along the moving boundary 
the following relation must be satisfied 

where rm and _Y are the position vector and the latent 
heat of fusion and dr, is perpendicular to the moving 
boundary, Fig. 2. In Fig. 2, the subscript 1 refers to solid 
and 2 refers to liquid. Also, along the moving front, the 
unit normals ni and nZ have opposite directions. The 

values ofd?Jdt andd?z;ldt aregiveninequation(6). An 
appropriate substitution yields the working form of 
equation (8), 

where 

and 

G,,, = P2CPzV2(aF,/an,), 
is 

(=,/an,) d&. (9b) 
s2 

The first square bracket on the RHS of equation (9) is 
the contribution of the quasi-steady solution. The 
second square bracket represents the transient effects 
not included in the quasi-steady solution. 

Equation (9) suggests that the values of ?r and ‘I+ are 
needed in order to calculate any change in the values of 
VI and V, while VI and V, are needed to compute ?I and 
‘t; using equation (7). This gives rise to an iterative 
procedure. More details of the method of analysis and 
numerical computations are in the following numerical 
examples. 

NUMERICAL EXAMPLES 

Two different moving boundary problems are 
considered. The availability of solutions in the 
literature to the problems under consideration is 
responsible for this selection. 

One-dimensional solidification 
Consider a liquid region 0 < X < L (Fig. 3) initially 

at temperature T 2 T,, where T, is the melting 

FIG. 2. Schematic of the liquid and solid region. 
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T=T, 

dX 

’ LIQUID, 2 

i- 

t 
XZL 

FIG. 3. One-dimensional moving boundary problem. 

temperature. When t > 0, the temperature of the 
boundary surface at X = 0 is reduced to a constant 
temperature To < T,. Furthermore, it is assumed that 
the temperature at X = L remains at temperature Zj. 
The Galerkin functions for solid and liquid regions are 

F, = X(X-r,) UOa) 

and 

F, = (X-rm)(L-X). (lob) 

The quasi-steady solutions for this example are well 
known, 

and 

(lla) 

T; = T,+(T-Tm)(X-r,)/(L--r,). (lib) 

The values of /?1, fiZ, y1 and y2 are defined using 
equations (6a) and (6b) as B1 = (To + Td/2, & = 
(T+T,)/2, y1 = 12a,/ri, and yZ = 12a&-r,,,)‘. 
Another advantage of this method is that the 
temperature distribution is computed analytically from 
equations (l)-(7), hence no numerical instability is 
expected. However, a finite Ar, should be selected for 
the computation of the progress of r,. The relative size 
of Ar, is therefore the only criterion for selecting the size 
of At. Equation (7) for solid and liquid regions when 
t, < t < tj+ 1 is written as 

T I,,+1 = [Tl,jV,l-(V,l +l)P1/21 exp (--YlW 

+W, + W3J2 W4 

and 

Ff;.j+l = C%,jK~-(K~ + 1)82/21 ew (-YzA~) 

+V’r,+ 1M,/2 WW 

where 

V,, = %,j/h.j+l = rm.j/rm.j+l (134 

V,2 = &,j/K,j+l = U--~m.jYol(L-~m,j+~) (13~) 

r m,j+l =~III.~ + (dr,,,/dt) * At (13c) 

s2 

T I Ti 

X 

and 

p8 dr,,,/dt = kI(6TI -2T,-4T,)/r, 

+k,(6~z-27;-4Tm)/(L-r,). (13d) 

Equation (13d) is equation (9) written for the one- 
dimensional problem under consideration. This 
equation contains singularities at X = 0. This 
singularity can be removed in an elementary manner. 
For instance, in this example, when t -+ 0, then ?I -+ 
(T, + To)/2 and ?; -+ T. Furthermore, if q = T,, 

r,,l = 2k,t(T,-T,)/pY when t < A.t, often used 
in the numerical study of moving boundary problems 
during the first time increment. 

Following the determination of position and the 
corresponding time for the first interval, the solution 
procedure begins for computation of the second 
interval by assuming Ar,. For more complicated 
situations, the value ofAr, at the onset ofeach iteration 
can be computed using the quasi-steady solution. The 
information available at the earlier steps is then used to 
calculate the corresponding At using equation (13d). 
Once rm, z and At are on hand, equations (12a) and (12b) 
are used to recalculate !?I and ?” at time t + At and 
obtain a new value of r,,2. If two successive values of 
r’m,2 do not differ appreciably, the iteration stops ; 
otherwise, the process will continue until convergence 
is achieved. The values of r,,,, 3, r,,.+, . . . , r,,j are then 
calculated as a function of time using the afore- 
mentioned procedure. 

The numerical values for a specific example dealing 
with the solidification of liquid Glauber salt are 
computed and presented for two different sets of 
temperatures in Fig. 4. The thermophysical properties 
used are 

p1 = 1460 kg mm3 pz = 1330 kg mm3 

k = 192Wm-‘“C-’ 1 . k =326Wm-‘“C-l 2 . 

C, = 0.544 kJ kg-’ “C-’ C, = 1.011 kJ kg-’ “C-l 

p9 = 139,500 kJ me3 L = 0.0508 m. 

Also, a similar solution, but using a modified boundary- 
layer integral method, an excellent representative of the 
experimental data of ref. [3], is plotted in the same 
figure. The value ofr, calculated by both methods agree 
remarkably well over the entire range of time used. 

The temperatures in the solid and liquid regions are 
calculated ifthe information obtained while computing 
r,,, is substituted in equations (12a) and (12b). Figure 5 
shows the temperature distribution as a function of 
time and position within solid and liquid for different 
sets of boundary conditions. It is observed that the 
contribution of the transient term is less than 3% and 
the temperature distribution is a nearly linear function 
of X in both regions. It is important to note that this 
method is not being developed for a one-dimensional 
problem, but it is being considered for more complex 
problems. The one-dimensional problem is selected 
mainly to demonstrate the contribution ofthe transient 
term in a well-known problem. 
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(b) 

FIG. 4. A comparison of the interface location for this integral method and a boundary-layer-type integral 
method. (a) L& = T,, (b) T > T,. 

Two-dimensional solidification 
A two-dimensional problem which has been 

considered by many investigators deals with solidifi- 
cation of a liquid in an infinitely long square prism. The 
procedure developed for this example can be equally 
successful for other two-dimensional configurations. 
The liquid is assumed to be, initially, at the fusion 
temperature, T,, while the outer boundary is 
maintained at a temperature TO < T,. The length of 
each side is 2a (Fig. 6), and the coordinates are selected 
so that -a < X < a and -a < Y < a. Because of 
geometrical symmetry in both X- and Y-directions, 
only the portion of solid and liquid located in the first 
quadrant is selected for this calculation. Inasmuch as 
the liquid has temperature T, throughout, only 

temperature variation in the solid phase will be 
calculated. 

Preliminary to this study, it is essential to define a 
suitable set of functions which can accurately describe 
the interface. A severe test for the suitability of any 
curve-fitting scheme is its ability to accurately describe 
the external boundary of this square geometry. A least- 
squares routine using a polynomial in X and Y was 
unsuccessful. Several other attempts utilizing trig- 
onometric and other type functions did not yield a 
satisfactory curve fitting of the external surface. 

The curve fitting which satisfactorily describes the 
external surface can best be introduced in cylindrical 
coordinates. The magnitude of the position vector at 
the interface is defined as rm and the angle of inclination 
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TIE, min. 

L” X-0 

(b) 28.‘.“‘.‘.“..“‘.‘..‘.“.“.” m 91 III E RI Ee II 
TIME, nin. 

FIG. 5. Transient temperature distribution at various points in the solid and liquid. (a) TO = 26°C and T = T,, 
(b) T’, = 23°C and T > T,. 

from the X-axis is designated as 8, Fig. 6. The value of 
r vs 0 for the external boundary, that is X = a line 
and Y = a line, is shown as a set of discrete points on 
Fig. 7. The functions that describe this type of variation 
are of exponential form. Among many exponential 
functions with different combinations, the following 
form gives the best results, 

r,(e) = a, +(e-x/4)z i 0, exp c-~(a-l)P-n/411 
.I=2 

(14) 
where N is the number of terms used for curve fitting. 
The values of a,, a,, . . . , aN are to be calculated by a 
least-squares routine. The absolute-value quantity in 
the argument of the exponential terms makes this 

equation symmetric about 0 = n/4. Among many 
values ofp attempted, p = 2 appears to provide the best 
curve fit solely on the basis of visual observation and 
standard deviation of the error. Figure 7 is prepared to 
demonstrate the agreement between this curve-fitting 
procedure and the outer surface of the solid region 
which is the boundary of the square region. The 
representation of the boundary is remarkably accurate 
and the least-squares curveis smooth. Thecoefficient a, 
in equation (14) is the radial coordinate of the interface 
at 0 = ~14. In the subsequent analysis, r, will represent 
the radial coordinate of the solid/liquid interface and r. 
the radial coordinate of the outer boundary. The 
Galerkin function for a solid region bounded between 
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-X 

FIG. 6. Schematic of solid and liquid regions in a square prism. 

r = r, and r = r. lines is 

4 = (r--J(rc-4 (15) 

which will be used throughout the following analysis. 
The standard Galerkin procedure for calculation of 

quasi-steady solution of temperature distribution is 
used. The quasi-steady temperature distribution is 
governed by the Laplace equation 

V’T: = 0 (16) 

with boundary conditions T: = T, when r = r,,, and 
Tf = To when r = ro. In accordance with the Galerkin 
procedure [26] 

T: = g(r, @+ E c&b-, 0) 
k=l 

= g(r, 0)+[c,+c,r+c3(O-n/4)2+cqr2+~~~1~ 

= g(r, 0) + F(r, 0) (17) 

% 
APPROXIMATED BOUNDARY 
ACTUAL BOUNDARY 

I 

..I._, 
si . ,: 

OIWENSIONLESS DISTANCE 

FIG. 7. Least-square computed curve approximating the 
exterior boundary of the square prism. 

wherein g(r, 0) is an arbitrarily-selected function which 
satisfies the non-homogeneous boundary conditions 
and fk is the product of C$ and the kth term of the 
polynomial in r and (e-71/4), shown in the square 
bracket of equation (17). The symmetry condition 
requires that terms with (e-n/4) to the power of odd 
exponents to vanish. 

Equations (16) and (17) are arranged using the 
Galerkin procedure as 

fiV2fk dV = - 
s 

frV2g dV (18) 
” 

in which 1 assumes values of 1,. , . , M. The function f 
belongs to a complete set of functions with continuous 
first and second derivatives. The evaluation of 
coefficient ck requires inversion of a symmetric matrix 
with the terms 

(lga) 

The function g is selected so that the non-homogeneous 
boundary conditions are satisfied 

s(r, 0) = T, + (T, - T,) ln (r/r,)/ln (r&,). (19) 

The logarithmic-type function resembles the equation 
derived for quasi-steady condition in cylindrical solids ; 
however, r. and rm in equation (19) depend on angle 0. 
Equations (17x19) result in computation of coefficients 
ck and temperature T:. A different number of terms, M, 
were used and the results indicate that the payback in 
terms ofaccuracy beyond M = 5 is small. However, the 
subsequent data are for M = 9. 

Initially, the conduction is assumed to be one- 
dimensional until formation of a predetermined small 
layer of solid is completed. When there is an established 
solid layer, the Galerkin method and the numerical 
procedure described a priori are capable of predicting 
the temperature distribution that results in the 
computation of the speed ofthe solidification front. The 
subsequent numerical results indicate that the quasi- 
steady solution has a dominating influence and the 
transient contribution is small. 

The methodology of the Galerkin method is well 
established. Its uniqueness and convergence is 
documented in ref. [26]. However, the transient 
contribution is new. A successful transient contribution 
depends on the manner in which the function F(r) in 
equation (1) is selected. When the quasi-steady 
temperature dominates, it is sufficient to use the same 
F(r) function in (1) as was used for the quasi-steady 
solution, equation (17). As a consequence, the transient 
solution will not alter the shape of the solidification 
front that is predicted by the Galerkin method; it 
merely offsets the time scale by a small amount which 
accounts for the finiteness of the specific heat. The 
second and perhaps more precise method is to consider 
the F function in equation (1) to be independent of that 
in (17). In this case, the coefficients ci, c2,.. in the 
definition of the F function become the elements of the 
first eigenvector in the general solution of the diffusion 
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equation [28]. Additional information on the 
computation of eigenvectors is included in ref. [29]. In 
this paper, the function Fin equation (17) is selected to 
be employed in (1) because of several factors. First, the 
effect of the transient solution in the early stages of 

solidification may be as large as SoA, it rapidly reduces 
to below 3% and retains a steady value. In a test case 
[30], the transient contribution indicated an offset time 
of approx. 7 min after 4 h of solidification. The second 

reason is the simplicity of additional steps to predict the 
offset time without using linear algebra for compu- 

tation of eigenvectors. Perhaps the most important 
reason is that it might infer that the transient solution is 
the cause of a discrepancy between this method and 
difference methods. It is deemed unwise, at this time, to 
introduce a new variable into a problem that already 

features many variables. 
Once the quasi-steady solution for T: is in hand, the 

computation of the progress of the solidification front 
will begin. Some iteration is required to achieve the final 
solution. It is logical, as the first step of iteration, to use 
the quasi-steady solution for T: at discrete points along 
the interface for computation of dr,/dt from equation 

(9) and r,,,,j+i from the equation 

r m,j+l ='m,j +Ar, (19’) 

where Ar, = (dr,,Jdt)At is the liquid thickness along 
unit normal to be solidified within time At at a given 

point i. Then equation (7), within the time increment, At, 

is arranged as 

?l?;,j+l = C’i;,jKl -(V,, + 1MJ21 exp (-YlAt) 

+(v,, + 1)!3,/2 (20) 

and it is used for computation of G, utilizing equation 
(9a) and recalculation of r,,,. The convergence is usually 

achieved with only a few iterations. 
The maximum travel of the boundary at that point 

and for a time increment At must beless than the radius 
of curvature at that point. This represents the maxi- 
mum volume of material which can undergo the 

change of phase in the neighborhood of a point on the 
interface with the smallest radius of curvature, Fig. 8. 

FIG. 8. Schematic of the methodology for calculating volume 
elements. 

For the problem under investigation, the portion of 
interface with the lowest radius of curvature is at 
0 = 71/4. Initially, the quasi-steady solution is used to 
calculate drldt. Since the value of dr at 0 = n/4 is set in 
advance in accordance with the requirement described 
earlier, then the value of At is computed. This value of At 
is used to compute Ar at other points along the 
interface, hence, the first step of interation is complete. 

The second step of iteration is identical to the first 

except the values of I$:., 1 and Vj are now in hand and the 
transient contribution can be included in this analysis. 

The iteration continues until none of the values of pand 
dr/dt suffer an appreciable change. Thereby, the new 
position of the interface and the new average 
temperature, -i; is calculated. 

Mashena [30] compared the procedure described 

herein with the numerical results reported in the 
literature for freezing of water. The agreement with the 
analysis of Saitoh [23] along the 0 = 0 line is excellent. 
However, this analysis results in a smaller radius of 
curvature along the 0 = x/4 line during later stages of 
freezing. In addition, the freezing of water [Zl, 23,311, 

indicates that the solidification front becomes circular 
as it proceeds toward the central portion of the square 

prism. In addition, Mashena [30] reported that P-l 16 
paraffin wax, a mixture of various hydrocarbons, 
retains a square-like profile during solidification, 
unlike water. It is clear that neither water nor paraffin 
wax are suitable substances for verification of an 

analytical procedure. The analytical model described in 
this paper and elsewhere in the literature requires the 

liquid to remain free from a bulk motion and the solid to 
be isotropic. In addition to other anomalies not 
mentioned here, water fails to satisfy these two 
conditions. Paraffin wax satisfies the above two 
conditions but it releases its latent heat of fusion over a 
wide range of temperatures. 

In searching for a suitable substance, the authors 
were able to obtain octadecane rated at 99% pure with a 
fusion temperature of 28.1”C. The crystallization 
behavior of this substance is markedly different from 
that of n-octadecane, but otherwise their behavior is 

similar. In order to demonstrate that all the required 
conditions are nearly satisfied, it is ofinterest to test the 
solidification of n-octadecane prior to testing 
octadecane. n-Octadecane is a straight, unbranched 
chain that can attain a high degree of organization 
upon solidification. The difference in the solidification 

behavior of these two substances reveals that the 
octadecane tested is nearly isotropic in its solid phase. 

The n-octadecane is introduced in a container 311 
mm in height with a 28.58 x 28.58 mm cross-section. At 
the outset, the temperature of n-octadecane is brought 
to nearly the fusion temperature of 28.15”C. The wall 
temperature of the container is then reduced to 23.65 
~0.15”C. After a preset time, the test is interrupted, 
the liquid removed, and the solid refrigerated. It is then 
sectioned and photographed. This process is repeated 
for other preset times and representative photographs 
are presented in Fig. 9. The photographs show the 
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(a> 

t = 2500 s t= 3600 s 

cc> 
t = 5370 s 

FIG. 9. Solidification of n-octadecane in a square prism, fusion temperature 28.15”C. 

appearance of needle-like crystals superimposed on a 
square-like profile with rounded corners. The 
crystallization is a result of the tendency on n- 
octadecane to attain a high level of organization upon 
solidification. Following preliminary testing of n- 

octadecane, a commercially available octadecane that 
contains some octadecane isomers is tested. First, the 
temperature is measured to be 28.15”C, nearly identical 

to that for n-octadecane. The octadecane is placed in 
the same container and the test is repeated. Since the 
bottom of the container is press-fitted with a Plexiglas 
plate, a light placed beneath the container provides a 
clear view of the solidification process which is 
recorded by a camera with an 80-mm macro lens 
positioned above and looking down into the container. 
The photographs are shown in Fig. 10. As expected, 
based on theoretical considerations, the needle-like 
crystals are absent and the line that separates liquid 
from solid is quite sharp. 

The thermophysical properties of n-octadecane [32] 
are used to analytically predict the instantaneous 
location of the interface in the above experiments, Fig. 
11. There is a remarkable resemblance between the 
photographs in Figs. 9 and 10 and the analytical results 
in Fig. 11. The radius of curvature at the corners, 
6 = 7c/4, in Figs. 9911 clearly disagrees with similar 
analyses reported in the literature using discretization 
techniques. Due to similarity of the molecular 
structures, this behavior of n-octadecane should be 
reproducible in other straight-chain hydrocarbons 

suitable for thermal storage applications. Because of 
this remarkable similarity, Figs. 9-l 1, it is sufficient to 
compare the analytical and experimental results along 
the 0 = 0 line. This comparison is shown in Fig. 12. The 
experimental data for n-octadecane are slightly higher 
than those for octadecane because n-octadecane 
crystals grow perpendicular to the walls of the 
container and the thermal conductivity is somewhat 
higher in the direction of crystal growth. Since the 

fusion temperature of n-octadecane and octadecane 
used in these experiments is nearly the same, the latent 
heat of fusion is expected to be nearly the same. No 
change in other thermophysical properties is antici- 
pated. The octadecane data are uncorrected for a slight 
parallax error estimated to vary between (G 
O.lO)r,(O)/a. The deviation between octadecane and the 
analytical prediction is well within this estimated 
parallax error. The needle-like crystals in Fig. 9 indicate 
that n-octadecane is pure and there is no significant 

convective flow since a convective flow will prevent 
formation of the needle-like crystals. The lack of a 
significant convective flow can be extrapolated to the 
solidification of octadecane. 

The square-like profile ofthe solidification front may 

imply that the solidification is one-dimensional. The 
dashed line in Fig. 12 is prepared based on a one- 
dimensional assumption. The results indicate that a 
one-dimensional solution is acceptable during the 
earlier stages of solidification. 

The slower solidification rate of octadecane in 

comparison with n-octadecane is of special importance. 
It indicates that octadecane has a fixed fusion 
temperature similar to n-octadecane. This point can be 
further amplified if this analysis is used to predict the 
solidification of a mixture such as P-l 16 paraffin wax. 
The experimental data selected are from ref. [30]. The 
fusion temperature is 44°C the temperature of 
container wall changes with time, and the latent heat is 
226 kJ kg- ‘. The other thermophysical properties are 

obtained from ref. [33]. Using a two-region approach, 
only 38% of the latent heat is sufficient to predict the 
instantaneous location of the interface, Fig. 13. Even a 
2% deviation in the value of the latent heat causes 
significant disagreement between the analysis and the 
experimental data. This sensitivity ofthe analysis to the 
value of the latent heat is responsible for the belief that 
octadecane behaves as if it has a single fusion 
temperature. Otherwise, the solidification would have 
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FIG. 10. Solidification of octadecane in a square prism, fusion temperature 28.15”C. 

taken place at a much faster rate than predicted by the 
analysis. 

REMARKS 

The procedure described in this paper makes use of 
the Galerkin method to predict solidification problems. 
The inclusion of transient contribution in the general 
solution is a simple process. No significant additional 
effort is required to account for the contribu- 
tion of directionally-dependent thermal conductivity. 
Although the numerical examples are for one- and two- 
dimensional problems, the mathematical derivation is 

aimed toward three-dimensional applications. The 
main task for an accurate solution is to seek a suitable 
function that closely approximates the moving 
boundary. The region of interest may also be 
subdivided into smaller regions for convenience of 
analysis. In this case, the best accuracy can be achieved 
if function 4 and its f&t derivatives are continuous in 
the entire region. 

A proper function for g, equation (19), is essential for 
a faster convergence. For instance, the accuracy and 
convergence behavior of the two-dimensional problem 
is evaluated by assuming the solidification front is 
circular. Even a single-term Galerkin solution results 
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FIG. 11. Computed interface for solidification of octadecane. 

in errors less than 10% for most of the region. A six-term 
solution reveals a high degree of accuracy. 

As discussed earlier, there is some disagreement 
between this method and the discretixation methods in 
the neighborhood of 0 = n/4 during later stages of 
solidification. Whenever the physical geometry is 
discretized, the step size is often too large for accurate 
resolutions in the neighborhood of tI = x/4. The 
difference between this method and the results using a 
non-orthogonal transformation is likely caused by an 
improper use of a mapping function [23]. The 
boundary function [23] 

r,, = l/cos (0) when 0 Q 0 G n/4 

1.8 1 I I I I , , I I I 1 

.s - 

_PFZSENTKTtlW 

___-__ ONE-DImIONAL 
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FIG. 12. A comparison between analysis and experimental 
data for n-octadecane and octadecane. 
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and 

r0 = l/cos (x/2 - 0) when n/4 G 0 G ~12 

causes the mapping function to violate the necessary 
and sufficient conditions that a mapping function must 
be a continuous and a single-valued function with 
continuous first and second derivatives. Since the first 
derivative of the function r,, is sectionally continuous, 
then the mapping becomes singular when 8 = n/4. The 
use of a singular second derivative introduces a 
singularity, analogous to a line heat source, in the 
transformed diffusion equation, apparently overlooked 
since the remedial steps are not cited. 

““T-----T 
.S- 

- PRESENT METHOO _ 

x EXPERIMENT 

DIMENSIONLESS TIME, q/d 

FIG. 13. A comparison between experimental data and 
analysis for P-l 16 paraffin wax. 
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UNE SOLUTION INTEGRALE DES PROBLEMES DE DEPLACEMENT DES LIMITES 

R&am-Une methode integrale est pr&sentbe, appliquant les fonctions de Galerkin et aboutissant 21 des 
solutions de forme fermbe pour la distribution des temeratures dans la phase liquide et solide. Contrairement 
aux m&hods appliquant des suppositions quasi-fermes, la mAthode en question retient le rBsultat de la capacitt 
thermique des solides et des liquides, contribuant de fait B la solution des problbmes relatifs & la tempbrature 
en fonction du temps le long de la limite. La mbthode est appliqube aux problbmes de solidification classique & 
une et deux dimensions en vue de vtrifier sa prkcision. La concordance entre cette mtthode et la mbthode 
intirgrale des limites & une dimension en vigueur est excellente. Les r&sulats g deux dimensions pour la 

gbomttrie quadrangulaire sont comparbs aux don&es exerimentales obtenues pour l’octodecane. 
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INTEGRALE LGSUNG FUR PROBLEME MIT WANDERNDER GRENZE 

Zusammenfaasung-Hier wird eine integrale Methode dargestellt, die von Galerkins Funktionen Gebrauch 
macht und zu einer geschlossenen Losung der Temperaturverteilung in der fliissigen und festen Phase flirt. 
Ungleich der Methoden, die von quasi-stabilen Annahmen ausgehen, behllt diese Methode die innere 
Wiirmekapazitlt vom Festen und Fliissigen bei und ist somit brauchbar fiir probleme, die sich mit 
zeitabhangiger temperatur entlang der Grenze befassen. Die Methode wird auf klassische ein- und zwei- 
dimensionale Erstarrung probleme angewandt, urn ihre Genauigkeit zu priifen. Die Ubereinstimmung dieser 
Methode mit existierenden ein-dimensionalen Grenzschicht-Integralmethode ist asugezeichnet. Die zwei- 
dimensionalen Ergebnisse fur einen quadratischen Querschmitt werden mit experimentellen Werten 

verglichen, die mit Oktadekan gewennen wurden. 

WHTEI-PAJIbHOE PEBIEHME IIPOPJIEM )JBMXEHMR FPAHMH 

htWTPlWl-kiHTerpaJIbHbIi-i MeTOn tlpW.ItOraeT HCllOJlb30BaHHe ~YHKl&i “hlepKHHa” H BeMT K 

perueHanh4 Jaxpbtrog +op~bt flnx rehmeparypnoro pacnpenenemin a XHsKOg n reepnofi +aase. B npo- 
THBOnOnO~eHOCTb MOTOAaM ,TpHMeHKIO”JHH KBa3H-,‘CTOfiWBbIe n~~O,~O~eHHe, 3TOT MeTOn Y’iHTbI- 

BaeT p3j’JlbTaTbl BHj’TpHHerO TelIJIa TBepAbIX H XWWHX BeIWCTB, lI03TOMY 3TOT MeTOn CllOCO6CTByeT 

pa3~“IeHHlO ,TpOBJIeM CBI13aHHbIX C TeM,TepaT,‘pOfi B~MeHHOk3aBHCHMOCTH Bl,OJ,b TpaHHIJb,. *OT 

MeTOLl IIpHMeHKeTCK llpll K,W.TCHYeCKHX OnHO HJIH AByX MePHblX 3aTIEpAeBaHHfi !JJIJi IQlOEpKH HX TO+ 

HOCTH. COOTBeTCTBHe MeXCny 3THM JlByMK MeTOllaMH; Me., 3TOrO MeTOlla H C~~TBj’lOUle~O OJIHO 

MepHOrO HHTWpanbHOrO CJIOII rpaHSH&I-IQeBOCXOWO. fiB,‘X MepHbIe p3j’JIbTaTbl &II,, KBa,QaTHOii 
I’eOMeTpHH MOr,‘T Cn,‘mHTb &i’Ill CpaBHeHHK OIIbITHbtX (3KCnepHMeHTanbHbIX) J,aHHbIX “OJ,y’,eHHb,X DJ,,l 


